NEXUS@FNAL Status and Plans

Nick Mast

NEXUS@FNAL Infrastructure

 Northwestern Experimental Underground Site at Fermilab (NEXUS@FNAL)

Underground cryogenic device testing facility in class 10,000 clean room

- Vibration-isolated dry dilution refrigerator
 - Temperatures down to 8 mK
- 107 m depth (300 meters water equivalent) + lead shielding (in progress)
 - Expected background <100 events/keV/kg/day
- Optical fiber, n, γ cal. sources
 - Exploring <1 keV options
- Reconfigurable for different payloads

Z. Hong, et al. "NEXUS@FNAL", Poster, LTD-18

SuperCDMS R&D

- Currently testing new generations of small (~1g) "HVeV" devices with single e/h pair resolution
- Improving superconducting Transition Edge Sensor (TES) design
 - Complex impedance measurements (N. Mishra and R. Chen)
- Studying detector leakage currents when biased with ~100 V to inform operation of larger devices at SNOLAB
- Investigating low energy excesses (2002.06937)
- Good platform for low mass (<1 GeV/c²)
 DM searches
 - Exposure comparable to recent HVeV DM searches (<u>2005.14067</u>) in far less time

Quantum Information Science (QIS)

- Collaboration with R. McDermott (UW-Madison), D. Bowring (FNAL), et al.
 - Study Quasiparticle Poisoning in Superconducting Microwave Resonators (1610.09351)
- Quantum coherence improved underground (2005.02286)
- Will use NEXUS to study coherence time in low background environments
- Fridge upgrades (2020 FNAL LDRD, Bowring DOE ECA)
 - Superconducting coax wiring for RF signals
 - Additional MC plate
 - Magnetic shielding (@ 1K stage)
 - Improved light and EMI shielding
 - Vibration reduction

Ricochet R&D

- Ricochet Collaboration will measure Coherent Elastic Neutrino Nucleus Scattering (CEVNS) at nuclear reactor (1107.3512, 1612.09035)
- Need to measure ~100 eV recoil energy
- One possibility: Zn target with Ir/Pt TES
 - ER/NR discrimination via pulse shape (different QP/phonon lifetimes)
- Ir/Pt TES chip running in NEXUS
 - Pulse shapes experimentally understood (R. Chen, et al., Neutrino 2020, #587)

Ionization Yield with Neutron Scattering

- **IMPACT** (Ionization Measurement with Phonons At Cryogenic Temperatures)
 - lonization yield measurement at low recoil energy (≥100 eV)
 - Elastic scattering of neutrons off detector nuclei as proxy for DM interactions
- Will use SuperCDMS Si and Ge devices
- 2.45 MeV neutron beam from commercial DD generator
- Backing array of neutron detectors for scattering angle (energy)

Conclusion

- NEXUS is a new clean, low-background, versatile cryogenic facility
- Fruitful SuperCDMS and Ricochet R&D in progress
- Upcoming QIS upgrades and studies
- n-generator (in hand) and backing array in near future for neutron-scattering
- Many projects in the pipeline not mentioned here
 - UV, Vis, BB IR sources
 - KIDs (Golwala @ Caltech)
 - meV-gap Photodetectors (Y. Kahn @UIUC)
 - 4K integrated charge amps (FNAL ASIC, Fahim ECA)

(Some) Current NEXUS Folks

- FNAL D. Bauer, L. Hsu, P. Lukens, M. Hollister, N. Kurinsky, N.Mishra, D. Bowring, R. Khatiwada, D. Mitchell
- **NW** E. Figueroa-Feliciano, Z. Hong, V. Novati, R. Ren, R. Chen
- UMN N. Mast, G. Spahn, Z. Williams, M. Gardner
- **U. Florida** T. Saab, C. Bathurst
- U. Hamburg B. von Krosigk, A. Zaytsev,
 H. Meyer zu Theenhausen
- **SMU** I. Saikia
- **UBC** A. Li
- **CU Denver** A. Roberts, B. Hines

Backup Slides

DD Generator

- D + D \rightarrow n + 3He, En = 2.45 MeV
- 10^6 - 10^8 n/s in ~ 4π
 - Shape into "beam" with poly shielding
- Many can be pulsed at ~10 us
- Relatively compact

https://www.doi.org/10.1063/1.3586154

Abstract

The Northwestern Experimental Underground Site at Fermilab (NEXUS@FNAL) is an underground cryogenic detector testing facility located in a clean room near the NOVA near detector. It currently features a vibration-isolated dry dilution refrigerator which operates down to 10 mK. The 300 meter water equivalent depth, combined with lead shielding around the refrigerator, is expected to lead to a background rate of <100 events/keV/kg/day. We present the current status of the NEXUS facility and overview of recent runs operating SuperCDMS R&D detectors. We also describe near and far term plans which include dark matter searches, qubit studies, neutrino detector development, and deployment of a neutron generator and backing array for neutron scattering experiments.